Computing Minimal Polynomial of Matrices over Algebraic Extension Fields

نویسندگان

  • Benyamin M.-Alizadeh
  • Amir Hashemi
چکیده

In this paper, we present a new and efficient algorithm for computing minimal polynomial of matrices over algebraic extension fields using the Gröbner bases technique. We have implemented our algorithm in Maple and we evaluate its performance and compare it to the performance of the function MinimalPolynomial of Maple 15 and also of the Bia las algorithm as a new algorithm to compute minimal polynomial of matrices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pmath 441/641 Algebraic Number Theory

Definition. An algebraic integer is the root of a monic polynomial in Z[x]. An algebraic number is the root of any non-zero polynomial in Z[x]. We are interested in studying the structure of the ring of algebraic integers in an algebraic number field. A number field is a finite extension of Q. We’ll assume that the number fields we consider are all subfields of C. Definition. Suppose that K and...

متن کامل

X iv : 0 70 6 . 35 15 v 1 [ m at h . R A ] 2 4 Ju n 20 07 Wedderburn Polynomials over Division Rings , II

A polynomial f(t) in an Ore extension K[t;S,D] over a division ring K is a Wedderburn polynomial if f(t) is monic and is the minimal polynomial of an algebraic subset of K. These polynomials have been studied in [LL5]. In this paper, we continue this study and give some applications to triangulation, diagonalization and eigenvalues of matrices over a division ring in the general setting of (S,D...

متن کامل

Computing the Rank of Large Sparse Matrices over Finite Fields

We want to achieve efficient exact computations, such as the rank, of sparse matrices over finite fields. We therefore compare the practical behaviors, on a wide range of sparse matrices of the deterministic Gaussian elimination technique, using reordering heuristics, with the probabilistic, blackbox, Wiedemann algorithm. Indeed, we prove here that the latter is the fastest iterative variant of...

متن کامل

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

A note on the computation of Puiseux series solutions of the Riccatti equation associated with a homogeneous linear ordinary differential equation

We present in this paper a detailed note on the computation of Puiseux series solutions of the Riccatti equation associated with a homogeneous linear ordinary differential equation. This paper is a continuation of [1] which was on the complexity of solving arbitrary ordinary polynomial differential equations in terms of Puiseux series. Introduction LetK = Q(T1, . . . , Tl)[η] be a finite extens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013